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This paper is the second in a series that describes the development of a 3-dimensional com- 
puter model of the heart. The problem studied here is that of a contractile fiber-wound 
toroidal tube immersed in a viscous incompressible fluid. A wave of contraction propagates 
around the tube, and this results in peristaltic pumping of the internal fluid in the direction 
of the wave. When the contraction is sufficiently strong, there is a small region of entrained 
fluid that is convected along at the speed of the wave. (‘, 1989 Academic Press. Inc. 

INTRODUCTION 

This paper is the second in a series that describes a computational method for the 
coupled equations of motion of a viscous incompressible fluid containing an 
immersed system of elastic or contractile fibers. Part I [ 1 ] introduces the method 
and applies it to the damped vibrations of a fiber-wound toroidal tube with 
time-independent elastic properties. The present paper considers the case of time- 
dependent elasticity, in which the fibers are contractile. The method is applied to 
a fiber-wound tube in which waves of contraction of the fibers are used to pump 
fluid around the tube (peristaltic pumping). Such contractile fibers are a critical 
ingredient in the computer model of the heart which will be the subject of Part III. 

METHODS 

The computational method has been fully described in [ 11, except for those 
aspects that are related to time-dependent elastic properties, but a brief summary 
will be given here to help orient the reader. The computational method used here 
and in [l] solves the coupled equations of a viscous, incompressible fluid and an 
immersed system of elastic or contractile fibers. The fluid equations are solved on 
a fixed cubic lattice, and the fibers are modeled by l-dimensional arrays of moving 
points. The fiber points are not required to coincide with the lattice points that are 
used for the fluid computation. Interaction between the fibers and the fluid is 
handled as follows: First the fiber points move at the local fluid velocity, which is 
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obtained by interpolation from the lattice points of the fluid computation. Second, 
the forces generated in the fibers are applied to the surrounding fluid. In both cases, 
the weights that define the coupling between fiber points and fluid points are 
derived from a computational model of the Dirac h-function. 

The forces that are applied by the fibers to the fluid are computed from the fiber 
elasticity (which was time-independent in [ 1 ] but time-dependent here). Adjacent 
points along a fiber are thought of as being connected by springs, so that the force 
on each fiber point is the result of the forces generated in the two springs connected 
to that point. The fiber points being massless (see [ 1 I), this force is transmitted to 
the fluid. 

In [ 11, the fiber forces were derived from an elastic energy function of the form 

E(...X,...)=Ce 
k 

‘xk+i,xk’) As, 

where 

e(q) = jf dq’) 4’. 

In these equations, X, is the position of the kth fiber point, As is the unstressed 
resting length of the springs that connect adjacent fiber points, e is the elastic 
energy of the fiber per unit unstressed length, (T is the fiber tension, and q is a 
dummy variable corresponding to 1 Xk + r -X,l/As so that q- 1 is the fiber strain. 

Here, we introduce explicit time dependence (and also explicit dependence on the 
Lagrangian position). This leads to an energy function of the form 

E(...xk . ..) t)=xek IX 
k 

where 

ek(q, t) = 
s 

’ ak(q’, t, ht. 
0 

The particular functions uk that we use have the form 

Ok(qv t)= 
Sk(t)(q As - Rk(t)), r 2 Rk(t) 

0, r d h(t), 

(4) 

(5) 

where S,(t) is the stiffness and Rk(t) is the resting length of the spring that joins 
point k and point k,+ 1. The functions s,(t) and Rk(t) are given in advance. At any 
particular time step they have constant known values, so the computational method 
is not changed by the fact that these values are different at different time steps. 
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RESULTS 

We consider the fiber-wound toroidal tube of Ref. [ 11, but here we let a wave of 
contraction propagate along this tube driving fluid around it. Although such a wave 
of contraction could be generated by varying either the stiffness or the resting- 
length parameters, we choose to hold the stiffnesses constant and to vary the resting 
lengths as described below. 

In the following, let Ri be the relaxed resting length of link k, and let 0: be the 
Lagrangian position of this link expressed in terms of angle about the symmetry 
axis in the equilibrium configuration of the tube. Then we impose the time variation 
on the resting length of link k, 

&c(t) = R;( 1 - a(t - e,lc) B(t)), 

where a(t) is a periodic step function with period T= T, + T, that satisfies 

O<t<T, 
T,<t<T=T,+T, 

a(t + T) = a(t) 

(6) 

(7) 
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FIG. 1. Cross section of torus and velocity vectors in the laboratory frame. Top row: weak contrac- 
tion (r* = 0.25). bottom row: strong contraction (a* = 0.625). Three selected time steps are shown in 
each case. The wave of contraction rotates counterclockwise. 
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and where 

fl(t)=(l-e-‘/I). (9) 

(The factor /?(I) is included merely to provide a smooth start-up. For t 9 r, 
j(t) z 1.) The parameter c gives the wave speed in radians per unit time. Since there 
must be an integer number of wavelengths in 271 radians, we require that 

CT = 2x/n. (10) 

In practice we take n = 1, so that is only one band of contraction moving around 
the torus. The parameter a* sets the overall strength of the contraction. Once the 
wave is up to full strength (/? z l), then the fibers in the active region have rest 
lengths which have been reduced by a fraction a * from their passive rest length. 
Note that a* must satisfy 0 <a* d 1. At a* = 0 there is no contraction at all, while 
at a* = 1 the rest length shrinks to zero during the active phase of the contraction. 

The effect of Eq. (6) is to send a wave of contraction propagating around the 
torus. At any point on the torus, T, is the duration of the active phase (“systole”, 
and T, is the duration of the passive phase (“diastole”). The temporal period of the 
wave is T = Ts + T, and the wavespeed (in radians per unit time) is c. 

1 . . . I. . . . . . . . . . . I . . . . . . . . . . . . . . . I 
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FIG. 2. Pressure contours corresponding to the velocity vectors shown in Fig. 1. 
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Let us now consider the computed solution to the problem outlined above. 
Figure 1 shows computed velocity vectors in the plane z = 0. The cross section of 
the torus in this plane is also shown. Two different strengths of contraction are 
depicted in the figure: the top row has c1* =0.25 while the bottom row has 
CI* = 0.625. Each of the three columns corresponds to a selected time step. In the 
time interval covered by the figure, the wave makes roughly half a turn around the 
torus. Note the larger velocity vectors and the greater deformation of the torus in 
the bottom row, where the contraction is stronger. Notice, too, the asymmetry of 
the velocity vectors. In general the vectors in the direction of wave propagation 
(counterclockwise in the figure) are larger than those in the reverse direction. 

Figure 2 shows computed pressure contours in the plane z = 0. The times and 
contraction strengths are the same as in Fig. 1. Here we do not explicitly draw in 
the cross section of the tube, since the pressure contours mark it very well. Note the 
pressure maximum in the interior of the tube that moves around with the wave of 
contraction. As with the velocity vectors there is an asymmetry here: the pressure 
gradient is steeper in the backward direction than in the forward direction from the 
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FIG. 3. Flow (volume/time) through the torus lumen as a function of time at four separate stations 
located 90” apart. Left column shows results for weak contraction; right column for stronger contrac- 
tion. Reading up through the stations from (1) through (4), one can follow the progress of the wave, 
which makes two complete cycles in the course of the computational experiment. Note net forward flow 
(especially for the stronger contraction); this indicates effectiveness of the contractile tube as a peristaltic 
pump. 
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pressure maximum. (This is the opposite of what one might guess from the lengths 
of the velocity vectors.) 

Figure 3 shows the flux through the tube (volume/time) at four stations located 
90” apart. The left-hand column shows the weaker contraction while the right-hand 
column shows the stronger contraction. Reading up either column one can follow 
the progress of the wave, which goes twice around the tube over the duration of the 
computer experiment. At each station, the imminent arrival of the wave is indicated 
by a strong positive peak consisting of fluid that is propelled forward ahead of the 
constricted region. This is followed by a smaller negative peak of fluid that flows 
backward through the constriction itself. The net flow is positive (this is particularly 
clear for the stronger contraction), which indicates that the wave of contraction 
succeeds in pumping fluid around the tube. 

Overall, Figs. l-3 do not show qualitative differences between the two contrac- 
tion strengths. Such differences are revealed, however, if we switch to a frame of 
reference rotating with the wave. In such a frame, the flow is nearly steady and the 
constriction appears to stand still, although the tube walls slide tangent to them- 
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FIG. 4. Velocity vectors in a frame of reference rotating with the wave (same format as Fig. 1). In 
the top row (weaker contraction), the flow is essentially a rigid-body rotation; there is little visual 
evidence of the active contractile region. In the bottom row (stronger contraction) there is a small zone 
of recirculation just ahead of the constriction. Note similarity of the flow pattern at different time steps. 
This indicates approximately steady flow in the wave frame. 
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selves in the clockwise direction (as viewed in our figures). We call this frame of 
reference the “wave frame.” 

Figure 4 shows velocity vectors in the wave frame. The top row (weaker contrac- 
tion) looks almost like a rigid rotation; it is hard to see the effects of the constric- 
tion, which manifests itself only as a reduced velocity of flow within the tube at 
about i-2 o’clock. In the bottom row, however, there appears to be a small zone 
of recirculation at the same location. This zone of recirculation is even more evident 
in Fig. 5, which shows streaklines (particle trajectories) in the wave frame. Since the 
flow is nearly steady in the wave frame (compare the three times steps shown) 
streaklines are essentially the same as streamlines (curves that are everywhere 
parallel to the velocity field at some instant). 

Figures 4-5 suggest that, in the case of the stronger contraction, particles may 
become trapped in the recirculation zone and be convected around the tube at the 
speed of the wave. This is a remarkable phenomenon, since the wall motion that 
generates the wave certainly does not involve any large-scale transport of the 
material points of the wall, which move primarily in and out and which suffer only 
slight longitudinal displacement. 

0816 1008 1200 

FIG. 5. Streaklines (particle trajectories) in a frame of reference rotating with the wave. (Since the 
flow is approximately steady in the wave frame, slreuklines are essentially the same as srreamlines.) As 
in Fig. 4, note the zone of recirculation just ahead of the wave in the case of the stronger contraction. 
Fluid in this zone has been entrained by the wave. In the laboratory frame, such fluid is convected 
around the tube at the speed of the wave. 
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TIME 

FIG. 6. Particle trajectories (angular position vs time). Left column: weak contraction. Right 
column: strong contraction. Each row shows particles which are initially distributed over the torus 
lumen in a cross section corresponding to one of the four stations of Fig. 3. (These stations are located 
at intervals of 90” around the tube.) Straight diagonal lines indicate the trajectory of the front and back 
of the wave. (Each frame shows two periods in space and two periods in time.) In the left column, note 
that particles are only slightly displaced forward as the wave goes by: In the right column, by contrast, 
many particles are caught by the front of the wave and carried for substantial distances around the tube 
before being left behind. (There is one particle at station 3 which makes a full 360” circumnavigation of 
the tube.) These trapped particles move at essentially the speed of the wave, so they must be caught in 
the recirculation zone that is evident in Fig. 5. The fact that particles enter and leave that zone, however, 
is evidence of a 3-dimensional flow pattern in which the recirculation zone is connected by streamlines 
with the rest of the fluid (even in the wave frame). 

Such particle convection at the speed of the wave (in the case of the stronger con- 
traction) is confirmed in Fig. 6 which plots the angular trajectories of fluid particles 
and of the wave itself. The format of Fig. 6 is similar to that of Fig. 3, in which 
flows, were plotted at four separate stations for each of the two contraction 
strengths. Here each frame plots the angular history of particles that start out dis- 
tributed over the cross section of the tube at one of these four stations. The straight 
diagonal lines indicate the angular trajectories of the front and back of the wave. 

In the case of the weaker contraction (left column), particles are pushed forward 
slightly by the passage of the wave, but no particles are entrapped for any signiti- 
cant time. The dispersion in particle displacements is presumably caused by the 
variable initial location of the particles over the cross section of the torus. In the 
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case of the stronger contraction (right column), many particles are caught by the 
front of the wave and carried along at the speed of the wave for variable but sub- 
stantial distances before they are left behind. (One particle which starts at station 3 
manages to get all of the way around the tube before dropping behind.) 
Presumably, the results depicted in the right-hand column of Fig. 6 reflect a com- 
plex 3-dimensional flow pattern in which particles get caught up in the recirculation 
zone for a while and then leave it via the third dimension. 

In summary, for sufficiently strong contractions we find a small recirculation 
zone just ahead of the wave in which trapped fluid is propelled around the torus 
at the speed of the wave. Such a zone is in fact predicted by the simplified theory 
of Ref. [2], which is based on Poiseuille flow. In that theory, however, the recir- 
culation zone is not localized at the front of the wave but fills the entire relaxed 
portion of the tube. Moreover, there is no mechanism in the Poiseuille flow theory 
to account for particles entering and leaving the recirculation region. Thus our 
results confirm a key qualitative prediction of [2]: the fact that some fluid will be 
convected at the speed of the wave when the contraction is sufficiently strong. At 
the same time, these results also produce important modifications of the picture 
that emerges in [2], since we find only a small recirculation zone poised at 
the front of the wave and since we find that the trapping of fluid particles in the 
recirculation zone is only temporary. 

CONCLUSIONS 

In Ref. Cl], we presented a computational method that solves the 3-dimensional 
Navier-Stokes equations in the presence of an immersed system of elastic fibers. 
The principal conclusion of the present paper is that this method is also applicable 
to the case in which the fibers have time-dependent elastic parameters and hence 
are capable of active mechanical behavior. This is a crucial step in the construction 
of a 3-dimensional computer model of the heart. 
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